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Abstract

The random fractal model is firstly put forward to simulate the drop size and spatial distribution in dropwise
condensation. The boundary conditions of heat conduction through the condensing wall surface are then established
using the heat transfer model through a single drop proposed by J.W. Rose. A numerical method towards the di-
rected simulation of dropwise condensation heat transfer is presented. The model considered the effect of the non-
uniformity of surface heat transfer thermal conductivity of the condenser material on dropwise condensation.
Numerical computations are conducted for dropwise condensation heat transfer of water on the copper wall on a
very wide range of pressure. The numerical simulation results agreed well with the bulk of existing experimental
data and the precision is higher than the model proposed by Rose. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Dropwise condensation has attracted considerable
interest owing to its heat transfer coefficient much larger
in order of magnitude than that of filmwise condensa-
tion. Considerable progress has been made to calculate
the heat transfer through a single drop of a given size.
However, the size and spatial distribution of drops must
also be known to calculate the average heat transfer for
the entire surface. The nonuniformity of surface heat
transfer and the effect of thermal conductivity of the
condensing wall material on dropwise condensation still
need to be studied.

Gose, Mucciardi and Baer [1], Tanasawa and
Tachibana [2] have attempted to model the growth and
coalescence by computer simulation for the entire range
of sizes on a fixed area, but the computer facility at that
time limit their investigations to artificially low site
densities in the order of 10* sites per cm?. Their calcu-
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lated heat transfer coefficients were lower in order of
magnitude than experimental observed values. Glicks-
man and Hunt [3] divide the dropwise condensation
cycle into a number of stages, starting with values of
nucleation site density up to 108 /cm?, but they also omit
the effects of nonuniform conduction.

The description of drop size and spatial distribution
is the key to simulating dropwise condensation heat
transfer. Although many research works on drop size
distributions of dropwise condensation had been con-
ducted early and a general drop size-distributions func-
tion is obtained [4-9]. The drop spatial-distributions on
dropwise condensations are less well understood till
now. Drop spatial-distributions has become the main
obstacle to the direct numerical simulation of dropwise
condensation heat transfer. It is the aim of the present
work to put forward the random fractal model de-
scribing the drop size and spatial distributions. The
boundary condition of heat conduction equation of
condensing wall is obtained from the model of heat
transfer through a single drop proposed by Rose. The
numerical simulations of dropwise condensation over a
wide range of pressures are performed thereby.
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Nomenclature
A area
Ay area of elementary cell of generation k

A(r)  the fraction of total area covered by all drops
having radius in the interval r, r,

Cp specific heat at constant pressure

cy specific heat at constant volume

h heat transfer coefficient

he heat transfer coefficient of drop

hy heat transfer coefficient of forced convection
heg latent heat of vaporization

ks thermal conductivity of condenser material
ki thermal conductivity of drop

k, thermal conductivity of vapor

/ length

n drop size distributions exponent

Ny area of elementary cell of generation &

N(r) number of drop with radius larger than r
Nu Nusselt number

P the fraction of available area
Pr Prandtl number
q mean heat flux

r drop radius

Fmin ~ minimum drop radius

Fmax ~ Maximum drop radius

Fmax  Instantaneous maximum drop

radius

R gas constant

Re Reynolds number

T temperature

T, vapor temperature

T temperature on the bottom surface of
condenser

Ts saturated temperature

AT subcooling

u vapor velocity

Greek symbols

a surface tension
I liquid density
Dy vapor density
thermal diffusivity (m?/s)
T time
0 drop sweeping period
v kinematic viscosity

2. Drop size and spatial distributions
2.1. The general drop size distributions function

The fraction of total area covered by all drops, 4(r),
having radius in the interval (r,r,) can be written as

A(r) = 1= (r/ra)". (1)

This form is supported by the experimental results of
different researchers, such as Graham and Griffith [5],
Tanaka [6], Tanasawa and Ochiai [7] with the distribu-
tion exponent, 7, lying in the range (0.313-0.350). So we
assume 7 to be a constant and take a value about 1/3.
Then if N(r) is defined as the number density of the
drops which have radius larger than r,
d(N(r)) 1 d4 n

S — 2
dr 2 dr nrfn(r/rm)'173 ( )

Drops size distribution can be well described by Eq. (2).
The dimensionless drops size distribution can be ob-
tained as

I [— a ‘”Zf”] = G-l (L) ®)

Thus the experimental results of different researchers
could fall on the same line in plots of lg[—rfﬂ$] Versus
1g(r/rn]. The drops size distribution measured by Gra-

ham and Griffith [5], Tanaka [6], Tanasawa and Ochial

[7] are plotted together in Fig. 1, from which the drops
size distribution can be well described by Eq. (3) in the
drops size range covering three orders of magnitude.
Rose and Glicksman [8] have attempted to describe
the drop size distributions using a sequence events’
model and derived a modified function of the drop size
distributions being the approximately the same as Eq.
(3) with distribution exponent n = (0.382. Tanaka [9]
expressed the stochastic process of drop growth due to
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Fig. 1. Experimental results of drops size distribution.
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both condensation and coalescence with a set of inte-
gral-differential equations [10], and a transient distri-
bution of drop belonging to the same generation was
obtained firstly, and then, the averaged drop size dis-
tributions were obtained. The averaged drop size dis-
tributions agreed also very well with that of Eq. (3), and
the value of the distribution exponent n was show as
0.320.

As mentioned above, a surprisingly good agreement
exists between theories and measurements, especially in
the theoretical works, the fluctuation and the inho-
mogeneity of condensing surface temperature are not
take into consideration. So, Le Fevre [11] guessed that
the drop size distributions might be decided simply
geometrically, independent of the heat transfer process
[11]. In fact, dropwise condensation consists of the
transient process occurring repeatedly on the condens-
ing surface. We find that the photographs of dropwise
condensation taken at different instant or in different
scale are similar and a whole photograph can be ob-
tained by enlarging properly a local photograph. These
features indicated that dropwise condensation appears
with self-similarity which is one of the most important
feature of fractal. In addition, drop spatial distribution
also possesses randomicity. So, a random fractal model
is presented here to describes drop size and spatial
distribution.

2.2. Proposed random fractal model of drop distribution

Referred to Fig. 2(a), a square with unit length were
small squares, in which P x m

2 2

divided into m small

@ £%0"

squares were randomly selected as the first generation of
elementary cells (P < 1). In order to construct the sec-
ond generation of elementary cells, the side length were
reduced to 1/(2m), thus the unit length square can be
divided into 4m? small squares with the side length of
1/(2m). Then in these small squares, some small squares
were randomly selected as the second generation of el-
ementary cells. The fraction of ‘available area’ covered
by the generation of elementary cells must also be P. The
fraction of available area is defined as the ratio of the
area covered by every generation of elementary cells to
the area not covered by older generations. By repeating
the above process, more generations of elementary cells
with smaller side length can be constructed. If these
small squares were replaced by inscribed circles, we can
obtain the lifelike picture of drop distributions on
dropwise condensing surface. For comparison, a
condensing photograph from [10] is also given in
Fig. 2(b).

Generally, the total area of elementary cells of gen-
eration k is given by

k—1
Nedy = (1 - ZN,-A,-) -P, (4)
i=1

where N, and 4; are amount and area of elementary cells
of generation k, respectively.
From Eq. (4), we obtain

Nedy = (1 = P) - N1 Ag—1- (5)

The amount of elementary cells of generation k is then
given by

Fig. 2. Comparison of drop distribution between random fractal model and photography. (a) Drop distribution constructed by using
the random fractal model. (b) Close-up photography of condensing surface [10].
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Ne=NZ(1-P) "z =P(1-P) 772, (6)

where Z; is the side length of elementary cells of gener-
ation k.
From the method of elementary cells, we have

i1 - 8%/2)

122 (7)
and
AZy =7 — 74 =74 — 27, = —Z,. (8)
Denoting N, = Zf.‘zl N, then
Ny = Ny — Ny_1 = N, 9)
In addition
3—2]: - limZﬂZ:. (10)

Thus we can obtain the size distribution of elementary
cells as

de 1g(1 *P) Zk
—_ 3_ —_ — = 7 -
Ig ( VA dZ,(> {3 + o2 ng1 +1gpP.  (11)

Comparing Egs. (11) and (3), we find that the distribu-
tion exponent can be written as

N = —[lg(1 - P)/1g2]. (12)

In fact, the ratio, y, of the side length of any generation
of elementary cells to the next generation is arbitrary
constant. If the drop size distributions is rededuced and
y replaced 2 as the ratio of the side length between any
two neighboring generations of elementary cells, then
Egs. (11) and (12) become

dnN, lg(1 - P) Z P
g| —Z22f | =3+ =L 1gZy1g——
(13)

n=—[lg(1 -P)/lgy]. (14)

2.3. Determination of P by using renormalization group
method

Larger drop is formed by coalescence between
neighboring smaller drops. The fact enlightens us that
the fraction P of available area can be obtained by
using renormalization group method. P can also be
actually considered as the probability of finding drop
in a grid. For the four neighboring grids, the drops
can coalesce in all the situations except having only a
drop and two neighboring diagonal drops, as illus-

N
+ o+

trated in Fig. 3. Thus the probability of finding
drop in the grid with the double size can be deter-
mined by

P'=P*+4P(1 - P) + 4P*(1 - P)’. (15)

According to the constructing process of the random
fractal model, P' = P can be obtained, that is, P is the
stationary point of the followed equation

P =P*+4P*(1 — P) +4P*(1 — P)". (16)

Four roots of Eq. (16) are: P, = (—3 — /21)/6, P, = 0,
P; = (=3 +4+/21)/6, P, = 1. Among the four roots, only
P; = 0.2638 meets the condition 0 < P < 1. Compen-
sation factor n/4, which is the ratio of area of inscribed
circle to that of square is introduced to eliminate the
error which is brought by the replacement of small
squares by inscribed circles. Thus drop distribution ex-
ponent can be obtained from Eq. (12)

n=—[lg(1 — Pr/4)]/1g2 = 0.3349. (17)

The value of n is very close to the experimental result,
1/3. By computer simulation, Rose and Glicksman [§]
find the value of P lies in 0.5-0.6 and for P=0.5, 0.55
and 0.6, the corresponding values for y are 4.4643,
5.2910 and 6.3291, respectively. Substituting these val-
ues into Eq. (14), the corresponding values of distribu-
tion exponents are 0.3334, 0.3395 and 0.3454,
respectively. The results are also very close to the ex-
perimental results and the above results obtained by
using renormalizing group method. In addition, the
value of the second item in the right of Eq. (3) is
lg(n/m) = —0.9743. substituting these above-mentioned
values of P and y obtained by Rose and Glicksman into
the second item in the right of Eq. (14), the corre-
sponding values of the second item are —0.9458, —0.9973
and —1.0536, respectively. On the other hand, Substi-
tuting P =0.2638, y = 2, into the second item in the right
of Eq. (14), the corresponding values of the second item
is —0.579. It can be found that P=0.55 and y = 5.29 can
obtain the best agreement with the existing experimental
results. So P = 0.55 and y = 5.29 were taken in the fol-
lowing numerical simulation.

The random fractal model provides a method of
constructing drop size and spatial distribution and ob-
tains the geometric boundary condition of dropwise
condensation heat transfer. This established the base for
the following numerical simulation.



Y.-T. Wu et al. | International Journal of Heat and Mass Transfer 44 (2001) 4455-4464 4459

3. Mathematical model of dropwise condensation heat
transfer

3.1. Basic equations

Fig. 4 shows the considered cell, which consists of the
drops and the part of the condensing wall. The gov-
erning equation for energy conservation to describe the
process is
orT o*'T  °o*T O’T
aZd(@‘i’aiyz‘F@). (18)
In fact, dropwise condensation consists of transient
processes, i.e., the primary drops are formed at nu-
cleation sites, and then coalescence occurs between the
drops’ growth of neighboring drops. A new generation
of drops is formed at the sites exposed by coalescence,
and so on until a falling drop sweeps from condensing
surface. Because the time response of the condensing
surface temperature variable is quite rapid, and the
average heat transfer coefficients of dropwise conden-
sation can be calculated using the simplified steady-
state conduction equation as: (07/0t) =0 in Eq. (18),
or

or o o1

Ox? + 0y? + 02 (19)

As for comparison, typical results with unsteady-state
model are also given to obtain the temperature variation
with time for specified condensing surface.

3.2. Heat transfer through a single condensate drop

For a hemispherical drop with uniform base tem-
perature, Rose [10] evaluated the combined thermal re-
sistance arising from conduction in the drop and
interfacial mass transfer at the vapor-liquid interface to
obtain the mean heat transfer coefficient through a
hemisphere drop as

hczﬂ@ f““%)ln {1 +v(1.o9+M>},

nr v/5.7—-1
(20)
where r is drop radius,
v =ar/k, (21)

o; is the vapor-liquid interfacial heat transfer coeffi-
cient which may be estimated from kinetic theory, or

2
_ n—1 thfg 2
“n+1 T, \|RT

(22)

o

and minimum drop radius 7, can be calculated from

20T,
el 2
Vmin PlhngT ( 3)

3.3. Heat transfer through bare surface

In order to prevent the buildup of enriched noncon-
densable gas, steam must flow along the condensing
surface. So heat transfer through the bare surface can be
considered as the forced convection heat transfer flow-
ing along a flat plate, for which the mean heat transfer
coefficient is predicted as usual from well-known rela-
tions

Nu = 0.664Re'*Pr'/3. Re < 5 x 10°

24
Nu = (0.037Re%® — 871)Pr'/,  Re =5 x 10° 24
where Nu = hel/k,;Re =ul/v. [ is the characteristic
length of condensing surface, i.e., the vapor flow path
along the surface.

4. The numerical simulation method

Since the heat conduction equation for the condens-
ing wall cannot be solved analytically, a numerical
method has to be used. A finite difference method

. s s 222 .
srise: /W’,,ﬁ"7 side surface for the cell:
¥ s EEIIITIIITS ATian=0
ﬁ‘ /: - Condensing surfaces under the drops:
Tz H aéjﬁ" ho(Ty T)=3Tidn
= 14
T ] /Uttom sutfaces: T=Ij=const
M
EEF 4% /] Lendensing surface not covered by
h VY drops:
V' h (LT) <dTion

Fig. 4. Condensing cell and boundary conditions.
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(FDM) is chosen to simulate dropwise condensation
heat transfer.

4.1. Finite difference equation
Eq. (18) is discretized using the method of control

volume approach as shown in Fig. 5, the integral form of
Eq. (18) is established as

n e m t+At
/ / / / pc,,?dldxdydz
Js w b Jt
t+At m n e
:/ / / / g(ka—T)dxdydzdt
t b K w ax a'x
t+At m e n
L
t b w s 6)/ ay
t+At e n m g oT
+/t /m /v /b a—y(ka—z>dzdxdydzdt. (25)

It can be discretized using the finite-volume mesh so that
as

apTp = agTg + awTy + ayTy + asTs + ay Ty

+a3T3+a272), (26)
where
AyAz AyAz AxAz
ag = ) ay = ) ay = )
(6x), (ox),, (6y),
AxAz AyAx AyAx
as =—-~ au =7 >, 4dp=7
(5-)))5 (6Z)m (6Z)b
s AxAyAz
P aAt

aPZaE+aw+aN+as+aM+aB+ag.
The discretization of Eq. (19) can be similarly obtained

apTp = agTg + awTy + ayTy + asTs + ay Ty

+ LIBTB, (27)
where ap :a5+aW+aN+as+aM+aB.

Iy
\\X' |
.

Fig. 5. Three-dimensional control volume.

4.2. Treatment of boundary conditions

Fig. 6 shows the control volume of boundary point.
For the four side surfaces of condensing wall, the
discretization of boundary condition may be written
as

TW :Tp. (28)

For the condensing surface, the discretization of
boundary condition may be written as

5 _ Tt (ks/(02),)T7
BT T+ (ke/(52),)]

where / is heat transfer coefficient from condensing
surface to vapor within the control unit.

The heat transfer coefficient % is different for the
different boundary points due to different drop size, the
major difficulty for the present numerical simulation is
that a very wide range of drop size (1072-10° pm)
exists on the condensing surface, extending from the
primary drop to the largest departing drop. If the grids
are generated according to the diameter of the mini-
mum drop, there would be 10° x 10° x 10° grids in
1 cm® condensing wall, and the calculation is out of
the question for the limitation of the computer ca-
pacity and speed. As shown in Fig. 7, the present
simulation used two kinds of grid system: a fine grid
system with the same side length as the diameter of
primary drop being used to construct drop distribu-
tions, then, a coarse grid system is used to calculate the
temperature distribution and average heat transfer co-
efficient of dropwise condensation. An area-weighted
average heat transfer coefficient of drops is considered
to be the heat transfer coefficient of the grid point,
thus,

h= ( > hid; + thf> /Ay, (30)
i=1

(29)

oS

Fig. 6. The control volume of boundary points.
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fine grid system of drop
distribution construction

=]

coarse grid system of heat
transfer computation

Fig. 7. Sketch of two kinds of grid systems.

where h;,A4; are the heat transfer coefficient and area
covered by drop i, respectively, k¢, Ar are heat transfer
and area of bare surface, respectively, 4, is the total area
of the boundary control unit.

4.3. Determining of instantaneous effective maximum drop
diameter

For the transient numerical simulation, drop instan-
taneous effective maximum diameter is necessary which
can be calculated by

2 2\ /13
max 1.53(f) , (31)

Vmax To

where 75 = 1.1 x 10%/4.

4.4. The average heat flux and the average subcooling of
condensing surface

The mean heat flux, ¢, through the entire condensing
surface may be calculated by

Table 1
Basic input parameters

nx  ny

1
4= D> bl T = Tio) Ay (32)
= =

where A4 is the total area of condensing surface, 4 is the
heat transfer coefficient through the j, kth control point,
Tyo is the temperature of the j, kth boundary control
point, 4 is the area at the j, kth boundary control
unit.

The average subcooling AT is calculated as

nx ny

1
AT = M ,:Zl ;(Tv — Tyo)A - (33)

4.5. Grid independence study

In order to study the grid independence, dropwise
condensation heat transfer coefficients of three groups of
typical input parameters (Table 1) are calculated at four
different mesh spacings, i.e., 20 x 20 x 20, 40 x 40 x 40,
50 x 50 x 50, 80 x 80 x 80 grids, respectively. The
computing results are plotted in Fig. 8. From Fig. 8, we
find that heat transfer coefficients decrease with the grid
size between the 20 x 20 x 20 mesh and 40 x 40 x 40
mesh, and approximately no significant difference be-
tween the 40 x 40 x 40 mesh and 80 x 80 x 80 mesh.
This leads to the selection of 40 x 40 x 40 mesh as the
appropriate grids number within the 8 x 8 x 12 mm
domain.

(98]
=
(=]

— T 373K - - - -T,=348K- - - [ T,=306K.

N
wn
(=]

[\S]
=
(=]

—_
wn
(=

—_
=
=

wn
(=

heat transfer coefficient (KW/nr)

0 20 40 60 80 100
grid number of each column(line)

Fig. 8. Effect of grid size on the heat transfer coefficients.

Serial number Computing Maximum drop Saturation Temperature of the bottom
domain (mm) diameter (mm) temperature (K) surface of condensing wall (K)

1 8x8x12 2 374 355

2 8x8x12 1.8 348 337

3 8x8x12 1.5 304 296
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5. Numerical simulation results with discussion

A VC6.0 program was used to carry out the sim-
ulation. It was run on a 64 MB RAM, 300 MHz

8
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6 |—stead-state results dis L -
unstead-state results 7 DDD/ e
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W 4 | pgﬁjnqu?—
s it
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0 500 1000 , 1500 2000
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4 5
2 e o [15]
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. I I
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computer. The computing domain is 8 x § x 12 mm
and the drop size range is 1072-2 x 10° microns. It
took fourteen hours to compute heat flux and tem-
perature subcooling for unsteady-state numerical sim-

8
6
X
4
< .o
G &8
2 oA - o [5] —_—
/ stead result
s - --- Rose model
1) | |
0 500 1000 , 1500 2000
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< o
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i stead-state results
/ fffff Rose model
0¢ ” | |
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(d) T.=348k
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6
X 4
~ K
< E/ .
oA o s
stead-state results
/Zf/ ——————— Rose model
% I |
OO 500 1000 1500 2000
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- o [5]
S 4 > 116] ]
o [15]
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q, kW/m?
(h) T,.=304k

Fig. 9. Comparison of experiment and theory of dropwise condensation heat transfer.
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ulation and 15 min for steady-state numerical simu-
lation.

In order to verify the proposed model of dropwise
condensation heat transfer, the simulation results for
vapor dropwise condensation heat transfers of the cop-
per surface at different pressures from 0.05 to 1.02 bars
are compared with the existing experimental results
[5,12-16] as shown in Fig. 9. The results calculated using
Rose model [10] are also given in Fig. 9. The predictions
with the proposed model agree quite well with the bulk
of existing experimental data and the precision is higher
than that of Rose model [10].

Fig. 10 shows the temperature spatial distribution on
the condensing surface at a given instant, from which the
temperature on the condensing surface covered by the
smaller drop will be higher than that of the surface
covered by larger drop. Such a nonuniformity of surface
temperature indicates that drop spatial distributions are
ununiform. Rose did not consider the influence of drops

Fig. 10. Temperature spatial distribution on the condensing
surface.
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Fig. 11. Temperature variations of copper surface.

spatial distributions on heat transfer of dropwise con-
densation, and therefore, the predicted results with his
model will be in lower higher precision.

The variation of surface temperature can be illus-
trated by typical unsteady-state numerical simulation.
As from Fig. 11, the condensing surface temperature of
the condensing surface varies periodically, the transient
dropwise condensation occurs repeatedly on the tracks
left by the departing drops. This confirms that heat-
transfer of a drop would be influenced by the neighbor
drops.

6. Conclusion

The conclusions can be drawn as follows:

1. Dropwise condensation is a typical fractal growth
process. A random fractal model is proposed to con-
struct the drops size and spatial distribution. This es-
tablished a base to the direct numerical simulation of
dropwise condensation heat transfer.

2. The proposed model considers the randomicity of
drops distribution and the nonuniformity of the sur-
face heat flux, and thus overcomes the limitation of
Rose model [10].

3. The agreement of theoretical results with the bulk of
existing experimental data at a very wide range of
pressures, ranging from 0.05 to 1.02 bar, verifies the
reliability and universality of the present numerical
simulation.

Further study is needed to simulate the dropwise
condensation heat transfer on different material surface
and study the effect of the thermal conductivity of the
condenser material on dropwise condensation heat
transfer.
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